Cellular Biology Heparin Disrupts the CXCR4/SDF-1 Axis and Impairs the Functional Capacity of Bone Marrow–Derived Mononuclear Cells Used for Cardiovascular Repair
نویسندگان
چکیده
Rationale: Cell therapy is a promising option for the treatment of acute or chronic myocardial ischemia. The intracoronary infusion of cells imposes the potential risk of cell clotting, which may be prevented by the addition of anticoagulants. However, a comprehensive analysis of the effects of anticoagulants on the function of the cells is missing. Objective: Here, we investigated the effects of heparin and the thrombin inhibitor bivalirudin on bone marrow–derived mononuclear cell (BMC) functional activity and homing capacity. Methods and Results: Heparin, but not bivalirudin profoundly and dose-dependently inhibited basal and stromal cell–derived factor 1 (SDF-1)–induced BMC migration. Incubation of BMCs with 20 U/mL heparin for 30 minutes abrogated SDF-1–induced BMC invasion (16 8% of control; P<0.01), whereas no effects on apoptosis or colony formation were observed (80 33% and 100 44% of control, respectively). Pretreatment of BMCs with heparin significantly reduced the homing of the injected cells in a mouse ear-wound model (69 10% of control; P<0.05). In contrast, bivalirudin did not inhibit in vivo homing of BMCs. Mechanistically, heparin binds to both, the chemoattractant SDF-1 and its receptor, chemokine receptor 4 (CXCR4), blocking CXCR4 internalization as well as SDF-1/CXCR4 signaling after SDF-1 stimulation. Conclusions: Heparin blocks SDF-1/CXCR4 signaling by binding to the ligand as well as the receptor, thereby interfering with migration and homing of BMCs. In contrast, the thrombin inhibitor bivalirudin did not interfere with BMC homing or SDF-1/CXCR4 signaling. These findings suggest that bivalirudin but not heparin might be recommended as an anticoagulant for intracoronary infusion of BMCs for cell therapy after cardiac ischemia. (Circ Res. 2012;111:854-862.)
منابع مشابه
Heparin disrupts the CXCR4/SDF-1 axis and impairs the functional capacity of bone marrow-derived mononuclear cells used for cardiovascular repair.
RATIONALE Cell therapy is a promising option for the treatment of acute or chronic myocardial ischemia. The intracoronary infusion of cells imposes the potential risk of cell clotting, which may be prevented by the addition of anticoagulants. However, a comprehensive analysis of the effects of anticoagulants on the function of the cells is missing. OBJECTIVE Here, we investigated the effects ...
متن کاملImportance of the SDF-1:CXCR4 axis in myocardial repair.
Since the original descriptions of the role of stromal cell-derived factor (SDF)-1 in recruiting bone marrow derived stem cells to the sites of vascular1 and myocardial injury,2 there has been increasing evidence of the broader importance of the SDF-1:CXCR4 axis in regulating myocardial repair following ischemic injury.2–6 In this issue of Circulation Research, Tang et al investigate the role o...
متن کاملCXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
OBJECTIVE Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However, BMCs comprise a heterogeneous mixture of cells, and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4, we examined whether the expr...
متن کاملDefective CXCR4 expression in aged bone marrow cells impairs vascular regeneration
The chemokine stromal cell-derived factor-1 (SDF-1) plays a critical role in mobilizing precursor cells in the bone marrow and is essential for efficient vascular regeneration and repair. We recently reported that calcium augments the expression of chemokine receptor CXCR4 and enhances the angiogenic potential of bone marrow derived cells (BMCs). Neovascularization is impaired by aging therefor...
متن کاملBone Marrow-Derived Mesenchymal Stem Cells Repair Necrotic Pancreatic Tissue and Promote Angiogenesis by Secreting Cellular Growth Factors Involved in the SDF-1α/CXCR4 Axis in Rats
Acute pancreatitis (AP), a common acute abdominal disease, 10%-20% of which can evolve into severe acute pancreatitis (SAP), is of significant morbidity and mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) have been reported to have a potential therapeutic role on SAP, but the specific mechanism is unclear. Therefore, we conducted this experiment to shed light on the probable mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012